

Statistical applications of Large Random Matrix theory to wireless communication

Jamal Najim,
CNRS and Télécom ParisTech

joint work with
A. Kammoun, R. Couillet and M. Debbah

Model and objective

Scenario in Wireless communication

Objective

Traditional estimator

Estimation of the ergodic capacity

Fluctuations of the estimator

Conclusion

Point-to-point wireless communication and MIMO channel

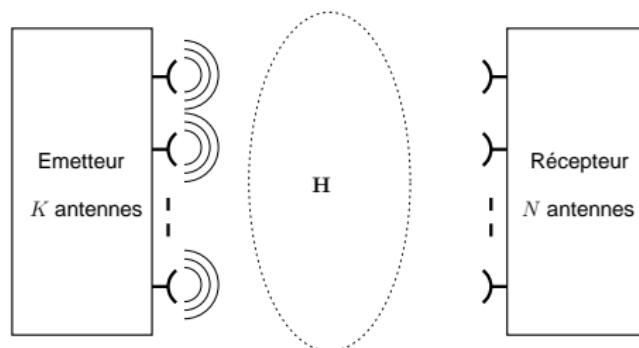


Figure: MIMO channel with K antennas at the transmitter and N antennas at the receiver

The received signal is given by $\mathbf{y} = \mathbf{Hx} + \sigma\mathbf{w}$ where

- ▶ H_{ij} is the gain between receiving antenna i and emitting antenna j .

Interference from multiple sources

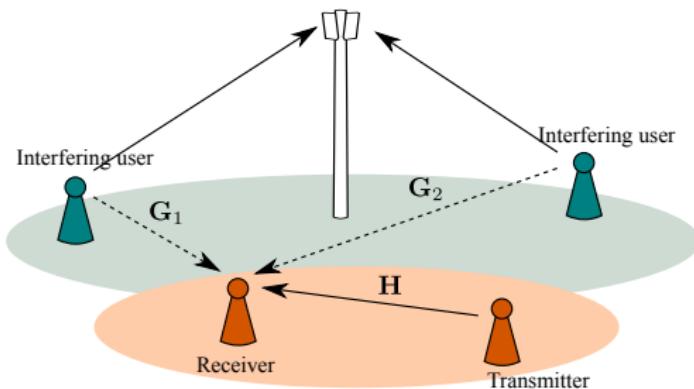


Figure: Users with channels G_1 and G_2 interfere with the communication between the receiver and transmitter

Scenario. In a point-to-point wireless communication, the receiver **undergoes coloured interference from multiple sources**, whereas the channel with the transmitter is perfectly known.

Communication model and ergodic capacity

Communication equation.

$$\bar{\mathbf{Y}} = \mathbf{H}\mathbf{X}_0 + \sum_{k=1}^K \mathbf{G}_k \mathbf{X}_k + \sigma \mathbf{W}$$

Communication model and ergodic capacity

Communication equation.

$$\bar{\mathbf{Y}} = \mathbf{H}\mathbf{X}_0 + \sum_{k=1}^K \mathbf{G}_k \mathbf{X}_k + \sigma \mathbf{W}$$

Observations. During a learning sequence, \mathbf{X}_0 is known and \mathbf{H} is estimated, hence the following observations **are available**:

$$\begin{aligned}\mathbf{Y} &= \bar{\mathbf{Y}} - \mathbf{H}\mathbf{X}_0 \\ &= \sum_{k=1}^K \mathbf{G}_k \mathbf{X}_k + \sigma \mathbf{W} \quad \triangleq \quad \mathbf{G}\mathbf{X} + \sigma \mathbf{W}, \quad \mathbf{G} = [\mathbf{G}_1, \dots, \mathbf{G}_K].\end{aligned}$$

Communication model and ergodic capacity

Communication equation.

$$\bar{\mathbf{Y}} = \mathbf{H}\mathbf{X}_0 + \sum_{k=1}^K \mathbf{G}_k \mathbf{X}_k + \sigma \mathbf{W}$$

Observations. During a learning sequence, \mathbf{X}_0 is known and \mathbf{H} is estimated, hence the following observations **are available**:

$$\begin{aligned}\mathbf{Y} &= \bar{\mathbf{Y}} - \mathbf{H}\mathbf{X}_0 \\ &= \sum_{k=1}^K \mathbf{G}_k \mathbf{X}_k + \sigma \mathbf{W} \quad \triangleq \quad \mathbf{G}\mathbf{X} + \sigma \mathbf{W}, \quad \mathbf{G} = [\mathbf{G}_1, \dots, \mathbf{G}_K].\end{aligned}$$

Associated ergodic capacity.

$$C_{\text{erg}} = \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^* + \mathbf{H}\mathbf{H}^*) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^*)$$

Objective

Estimation of the **ergodic capacity**

$$C_{\text{erg}} = \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^* + \mathbf{H}\mathbf{H}^*) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^*)$$

based on the $N \times M$ observations

$$\mathbf{Y} = \mathbf{G}\mathbf{X} + \sigma \mathbf{W}.$$

Objective

Estimation of the **ergodic capacity**

$$C_{\text{erg}} = \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^* + \mathbf{H}\mathbf{H}^*) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^*)$$

based on the $N \times M$ observations

$$\mathbf{Y} = \mathbf{G}\mathbf{X} + \sigma \mathbf{W}.$$

Regime of interest: M larger but **of the same order** as N :

$$M \propto \rho N, \quad \rho > 1.$$

Formally:

$$1 < \liminf \frac{M}{N} \leq \limsup \frac{M}{N} < \infty.$$

The traditional estimator

Regime where $M \gg N$. If $M \rightarrow \infty$, N fixed:

$$\frac{1}{M} \mathbb{E} \mathbf{Y} \mathbf{Y}^* = \sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \quad \text{and} \quad \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \xrightarrow[M \rightarrow \infty, N \text{ fixed}]{a.s.} \sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*$$

The traditional estimator

Regime where $M \gg N$. If $M \rightarrow \infty$, N fixed:

$$\frac{1}{M} \mathbb{E} \mathbf{Y} \mathbf{Y}^* = \sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \quad \text{and} \quad \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \xrightarrow[M \rightarrow \infty, N \text{ fixed}]{a.s.} \sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*$$

Hence one expects that:

$$\frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* + \mathbf{H} \mathbf{H}^*) \rightarrow 0 ,$$

$$\frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*) \rightarrow 0 .$$

The traditional estimator

Regime where $M \gg N$. If $M \rightarrow \infty$, N fixed:

$$\frac{1}{M} \mathbb{E} \mathbf{Y} \mathbf{Y}^* = \sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \quad \text{and} \quad \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \xrightarrow[M \rightarrow \infty, N \text{ fixed}]{a.s.} \sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*$$

Hence one expects that:

$$\begin{aligned} \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* + \mathbf{H} \mathbf{H}^*) &\rightarrow 0, \\ \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) - \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*) &\rightarrow 0. \end{aligned}$$

Definition of $\hat{C}_{\text{trad.}}$.

$$\hat{C}_{\text{trad}}(y) = \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + y \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right)$$

Lemma. If N is fixed and $M \rightarrow \infty$, then:

$$\hat{C}_{\text{trad}}(1) - C_{\text{erg}} \rightarrow 0.$$

Model and objective

Estimation of the ergodic capacity

Deterministic equivalents - General results

Failure of the traditional estimator

A consistent estimator for the ergodic capacity

Fluctuations of the estimator

Conclusion

Deterministic equivalents I

Marčenko-Pastur model. If \mathbf{X} in a $N \times M$ matrix with i.i.d. entries

$$\mathbb{E}\mathbf{X}_{ij} = 0, \quad \text{var}\mathbf{X}_{ij} = \theta^2$$

We are interested in the limiting behaviour of the spectral measure of $\frac{1}{M}\mathbf{X}\mathbf{X}^*$:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_n}, \quad (\lambda_n) \text{ eigenvalues of } \frac{1}{M}\mathbf{X}\mathbf{X}^*$$

Deterministic equivalents I

Marčenko-Pastur model. If \mathbf{X} in a $N \times M$ matrix with i.i.d. entries

$$\mathbb{E}\mathbf{X}_{ij} = 0, \quad \text{var}\mathbf{X}_{ij} = \theta^2$$

We are interested in the limiting behaviour of the spectral measure of $\frac{1}{M}\mathbf{X}\mathbf{X}^*$:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_n}, \quad (\lambda_n) \text{ eigenvalues of } \frac{1}{M}\mathbf{X}\mathbf{X}^*$$

Stieltjes transform. It is a convenient transform of the spectral measure L_N and is defined as:

$$\begin{aligned} ST(L_N) &= \frac{1}{N} \sum_{n=1}^N \frac{1}{\lambda_n - z} \\ &= \frac{1}{N} \text{trace} \left(-z\mathbf{I} + \frac{1}{M}\mathbf{X}\mathbf{X}^* \right)^{-1} \end{aligned}$$

Deterministic equivalents II

Deterministic equivalent for the Stieltjes transform. The Stieltjes transform of the spectral measure satisfies:

$$\frac{1}{N} \sum_{n=1}^N \frac{1}{\lambda_n(\frac{1}{M}\mathbf{X}\mathbf{X}^*) - z} - \mathbf{f}_N(z) \xrightarrow[N, M \rightarrow 0]{} 0$$

where \mathbf{f}_N satisfies the equation:

$$zc - N\theta^2\mathbf{f}_N^2 + (z + (c_N - 1)\theta^2)\mathbf{f}_N + 1 = 0, \quad c_N = \frac{N}{M}$$

Deterministic equivalents II

Deterministic equivalent for the Stieltjes transform. The Stieltjes transform of the spectral measure satisfies:

$$\frac{1}{N} \sum_{n=1}^N \frac{1}{\lambda_n(\frac{1}{M}\mathbf{X}\mathbf{X}^*) - z} - \mathbf{f}_N(z) \xrightarrow[N, M \rightarrow 0]{} 0$$

where \mathbf{f}_N satisfies the equation:

$$zc - N\theta^2\mathbf{f}_N^2 + (z + (c_N - 1)\theta^2)\mathbf{f}_N + 1 = 0, \quad c_N = \frac{N}{M}$$

Marčenko Pastur distribution.

$$\mathbf{f}_N = ST(\pi_N)$$

with

$$\pi_N(d\lambda) = \left(1 - \frac{1}{c_N}\right)^+ + \frac{\sqrt{(\lambda_N^+ - \lambda)(\lambda - \lambda_N^-)}}{2c_N\theta^2\lambda} 1_{(\lambda_N^-, \lambda_N^+)} d\lambda, \quad c_N = \frac{M}{N}.$$

where $\lambda_n^\pm = \theta^2(1 \pm c_n)^2$.

Deterministic equivalents II

Non-centered model. If $\mathbf{Y} = \frac{1}{\sqrt{N}}\mathbf{X} + \mathbf{A}$. Consider the equation:

$$\delta = \frac{1}{M} \text{trace} \left[-z(1 + c_N)\delta + (1 - c_N) + \frac{\mathbf{A}\mathbf{A}^*}{1 + \delta} \right]^{-1}$$

Then

$$\frac{1}{N} \sum_{n=1}^N \frac{1}{\lambda_n(\mathbf{Y}\mathbf{Y}^*) - z} - \delta(z) \xrightarrow[N, M \rightarrow 0]{} 0$$

The quantity δ is a deterministic equivalent of the spectral measure

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_n(\mathbf{Y}\mathbf{Y}^*)} .$$

Deterministic equivalents III

Model and quantity of interest.

$$\mathbf{Y} = \mathbf{GX} + \sigma \mathbf{W} \quad \text{and} \quad \mathbf{Q}(y) = \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right)^{-1}$$

Deterministic equivalents III

Model and quantity of interest.

$$\mathbf{Y} = \mathbf{GX} + \sigma \mathbf{W} \quad \text{and} \quad \mathbf{Q}(y) = \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right)^{-1}$$

Fundamental equation. Let $y > 0$. The following equation in $\kappa = \kappa(y)$ admits a unique positive solution:

$$\kappa = \frac{1}{M} \text{trace} \left(\left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right) \left(\frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} + y \mathbf{H} \mathbf{H}^* \right)^{-1} \right)$$

Deterministic equivalents III

Model and quantity of interest.

$$\mathbf{Y} = \mathbf{GX} + \sigma \mathbf{W} \quad \text{and} \quad \mathbf{Q}(y) = \left(y \mathbf{HH}^* + \frac{1}{M} \mathbf{YY}^* \right)^{-1}$$

Fundamental equation. Let $y > 0$. The following equation in $\kappa = \kappa(y)$ admits a unique positive solution:

$$\kappa = \frac{1}{M} \text{trace} \left(\left(\sigma^2 \mathbf{I} + \mathbf{GG}^* \right) \left(\frac{\sigma^2 \mathbf{I} + \mathbf{GG}^*}{1 + \kappa} + y \mathbf{HH}^* \right)^{-1} \right)$$

Auxiliary quantity.

$$\mathbf{T}(y) = \left(y \mathbf{HH}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{GG}^*}{1 + \kappa} \right)^{-1},$$

\mathbf{T} is a deterministic equivalent of \mathbf{Q} as we shall see:

Asymptotic results

Lemma 1. The following convergences hold true:

1. For $y > 0$ and (\mathbf{U}) $N \times N$ matrices with uniformly bounded norm:

$$\frac{1}{M} \text{trace } \mathbf{UQ}(y) - \frac{1}{M} \text{trace } \mathbf{UT}(y) \xrightarrow[N, n \rightarrow \infty]{a.s.} 0$$

Asymptotic results

Lemma 1. The following convergences hold true:

1. For $y > 0$ and (\mathbf{U}) $N \times N$ matrices with uniformly bounded norm:

$$\frac{1}{M} \text{trace } \mathbf{UQ}(y) - \frac{1}{M} \text{trace } \mathbf{UT}(y) \xrightarrow[N, n \rightarrow \infty]{a.s.} 0$$

2. For $y > 0$ and also for $y = 0$:

$$\frac{1}{N} \log \det \left(y \mathbf{HH}^* + \frac{1}{M} \mathbf{YY}^* \right)$$

$$- \frac{1}{N} \log \det \left(y \mathbf{HH}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{GG}^*}{1 + \kappa} \right) - \frac{M}{N} \log(1 + \kappa) + \frac{M}{N} \frac{\kappa}{1 + \kappa} \rightarrow 0$$

Corollary: \hat{C}_{trad} is not consistent

Lemma 2. Under the regime of interest

$$\begin{aligned}\hat{C}_{\text{trad}}(y) - \left(\frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) - \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right) \right) \\ - \frac{M}{N} \log(1 + \kappa) + \frac{M}{N} \frac{\kappa}{1 + \kappa} + \frac{N - M}{N} \log \left(\frac{M - N}{M} \right) - 1 \rightarrow 0\end{aligned}$$

Corollary: \hat{C}_{trad} is not consistent

Lemma 2. Under the regime of interest

$$\begin{aligned}\hat{C}_{\text{trad}}(y) - \left(\frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) - \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right) \right) \\ - \frac{M}{N} \log(1 + \kappa) + \frac{M}{N} \frac{\kappa}{1 + \kappa} + \frac{N - M}{N} \log \left(\frac{M - N}{M} \right) - 1 \rightarrow 0\end{aligned}$$

Remark: This **substantially** differs from what is expected:

$$\begin{aligned}\hat{C}_{\text{trad}}(1) - C_{\text{erg}} = \left(\frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \right) \\ - \left(\frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* + \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right) \right) \xrightarrow{\text{NO!}} 0\end{aligned}$$

The ergodic capacity

Recall the definition

$$C_{\text{erg}} = \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* + \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right)$$

Splitting the ergodic capacity. Write $C_{\text{erg}} = C_{\text{erg}}^1 - C_{\text{erg}}^2$ where

$$C_{\text{erg}}^1 = \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* + \mathbf{H} \mathbf{H}^* \right)$$

$$C_{\text{erg}}^2 = \frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right)$$

We shall separately estimate the 2 quantities, beginning with C_{erg}^2 .

Estimation of C_{erg}^2

Applying Lemma 1-2) for $y = 0$:

$$\begin{aligned} & \frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \\ & - \frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) - \frac{M}{N} \log(1 + \kappa) + \frac{M}{N} \frac{\kappa}{1 + \kappa} \rightarrow 0 \end{aligned}$$

yields $\kappa = \frac{N}{M-N}$ and

$$\frac{1}{N} \log \det \left(\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^* \right) - \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) + \frac{N-M}{N} \log \left(\frac{M-N}{M} \right) - 1 \xrightarrow{\text{a.s.}} 0 .$$

hence the desired result.

Estimation of C_{erg}^1

Recall the definition of C_{erg}^1 :

$$C_{\text{erg}}^1 = \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^* + \mathbf{H}\mathbf{H}^*)$$

Estimation of C_{erg}^1

Recall the definition of C_{erg}^1 :

$$C_{\text{erg}}^1 = \frac{1}{N} \log \det (\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^* + \mathbf{H}\mathbf{H}^*)$$

- ▶ A priori, C_{erg}^1 **does not only depend** on the eigenvalues of $\mathbf{G}\mathbf{G}^*$, in contrast with C_{erg}^2 .
- ▶ Hence, it will be difficult to get an estimator simply based on the eigenvalues of the observations $\frac{1}{M} \mathbf{Y}\mathbf{Y}^*$

Outline of the proof

Available result

$$\begin{aligned} & \frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \\ & - \frac{1}{N} \left\{ \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) + M \log(1 + \kappa) - M \frac{\kappa}{1 + \kappa} \right\} \rightarrow 0 \end{aligned}$$

Outline of the proof

Available result

$$\begin{aligned} & \frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \\ & - \frac{1}{N} \left\{ \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) + M \log(1 + \kappa) - M \frac{\kappa}{1 + \kappa} \right\} \rightarrow 0 \end{aligned}$$

1. Link between C_{erg}^1 and the observations if $y_{\kappa} = \frac{1}{1+\kappa}$:

$$C_{\text{erg}}^1 - \left(\frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + y_{\kappa} \mathbf{H} \mathbf{H}^* \right) + \frac{M - N}{N} \log(y_{\kappa}) + \frac{M}{N} (1 - y_{\kappa}) \right) \rightarrow 0 \quad (1)$$

Outline of the proof

Available result

$$\begin{aligned} & \frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \\ & - \frac{1}{N} \left\{ \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) + M \log(1 + \kappa) - M \frac{\kappa}{1 + \kappa} \right\} \rightarrow 0 \end{aligned}$$

1. Link between C_{erg}^1 and the observations if $y_{\kappa} = \frac{1}{1+\kappa}$:

$$C_{\text{erg}}^1 - \left(\frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + y_{\kappa} \mathbf{H} \mathbf{H}^* \right) + \frac{M - N}{N} \log(y_{\kappa}) + \frac{M}{N} (1 - y_{\kappa}) \right) \rightarrow 0 \quad (1)$$

2. Approximation \hat{y} (which depends on the observations!) of y_{κ} (which depends on the unknown \mathbf{G} !)

Outline of the proof

Available result

$$\begin{aligned} & \frac{1}{N} \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \\ & - \frac{1}{N} \left\{ \log \det \left(y \mathbf{H} \mathbf{H}^* + \frac{\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{G}^*}{1 + \kappa} \right) + M \log(1 + \kappa) - M \frac{\kappa}{1 + \kappa} \right\} \rightarrow 0 \end{aligned}$$

1. Link between C_{erg}^1 and the observations if $y_{\kappa} = \frac{1}{1+\kappa}$:

$$C_{\text{erg}}^1 - \left(\frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + y_{\kappa} \mathbf{H} \mathbf{H}^* \right) + \frac{M - N}{N} \log(y_{\kappa}) + \frac{M}{N} (1 - y_{\kappa}) \right) \rightarrow 0 \quad (1)$$

2. Approximation \hat{y} (which depends on the observations!) of y_{κ} (which depends on the unknown \mathbf{G} !)
3. Substitution of y_{κ} by \hat{y} in (1).

Details on \hat{y} |

Approximation of y_{κ} . Recall that

$$\kappa = \frac{1}{M} \text{trace} \left((\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^*) \left(\frac{\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^*}{1 + \kappa} + y \mathbf{H}\mathbf{H}^* \right)^{-1} \right)$$

Lemma Define \hat{y} by

$$\hat{y} = 1 - \frac{N}{M} + \frac{\hat{y}}{M} \text{trace} \mathbf{H}\mathbf{H}^* \left(\hat{y} \mathbf{H}\mathbf{H}^* + \frac{1}{M} \mathbf{Y}\mathbf{Y}^* \right)^{-1}$$

then $\hat{y} - y_{\kappa} \rightarrow 0$

Details on \hat{y} II

Elements of proof. It is easy to prove that $y = \frac{1}{1+\kappa(y)}$ admits a unique solution y_κ and that

$$\begin{aligned}
 y_\kappa &= 1 - \frac{N}{M} + \frac{1}{M} \text{trace } \mathbf{H}\mathbf{H}^* \left(\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^* + \mathbf{H}\mathbf{H}^* \right)^{-1} \\
 &= 1 - \frac{N}{M} + \frac{y_\kappa}{M} \text{trace } \mathbf{H}\mathbf{H}^* \left(\frac{\sigma^2 \mathbf{I} + \mathbf{G}\mathbf{G}^*}{1 + \kappa} + y_\kappa \mathbf{H}\mathbf{H}^* \right)^{-1} \\
 &= 1 - \frac{N}{M} + \frac{y_\kappa}{M} \text{trace } \mathbf{H}\mathbf{H}^* \mathbf{T}(y_\kappa) \\
 &\approx 1 - \frac{N}{M} + \frac{y_\kappa}{M} \text{trace } \mathbf{H}\mathbf{H}^* \mathbf{Q}(y_\kappa)
 \end{aligned}$$

Hence \hat{y} satisfying

$$\hat{y} = 1 - \frac{N}{M} + \frac{\hat{y}}{M} \text{trace } \mathbf{H}\mathbf{H}^* \mathbf{Q}(\hat{y})$$

is a good candidate to approximate y_κ .

Consistent estimator for C_{erg}

Gathering the 2 estimators for C_{erg}^1 and C_{erg}^2 , we obtain:

$$C_{\text{erg}} - \hat{C}_G \rightarrow 0$$

where

$$\begin{aligned}\hat{C}_G &= \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + \hat{y} \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right) \\ &\quad + \frac{M-N}{N} \left(\log \left(\frac{M\hat{y}}{M-N} \right) + 1 \right) - \frac{M}{N} \hat{y}\end{aligned}$$

In particular,

$$= \hat{C}_{\text{trad}}(\hat{y}) + \frac{M-N}{N} \left(\log \left(\frac{M\hat{y}}{M-N} \right) + 1 \right) - \frac{M}{N} \hat{y}$$

Model and objective

Estimation of the ergodic capacity

Fluctuations of the estimator

Conclusion

A central limit theorem for \hat{C}_G

Theorem. Let

$$\begin{aligned}\Theta_N &= 2 \log(M \mathbf{y}_\kappa) \\ &\quad - \log \left[(M - N) \left(M - \text{trace} \left(\mathbf{I} + \mathbf{H} \mathbf{H}^* \left(\mathbf{G} \mathbf{G}^* + \sigma^2 \mathbf{I} \right)^{-1} \right)^{-2} \right) \right]\end{aligned}$$

Then

$$\frac{N}{\Theta_N} \left(\hat{C}_G - C_{\text{erg}} \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1).$$

Elements of proof I

Recall that

$$\hat{C}_G = \hat{C}_{\text{trad}}(\hat{y}) + \frac{M-N}{N} \left(\log \left(\frac{M\hat{y}}{M-N} \right) + 1 \right) - \frac{M}{N}\hat{y} \quad (2)$$

Elements of proof I

Recall that

$$\hat{C}_G = \hat{C}_{\text{trad}}(\hat{y}) + \frac{M-N}{N} \left(\log \left(\frac{M\hat{y}}{M-N} \right) + 1 \right) - \frac{M}{N}\hat{y} \quad (2)$$

Estimates for \hat{y} . The following estimates hold true:

$$\text{var } \hat{y} = \mathcal{O} \left(\frac{1}{N^2} \right) \quad \text{and} \quad \mathbb{E} \hat{y} = y_{\kappa} + \mathcal{O} \left(\frac{1}{N^2} \right)$$

Elements of proof I

Recall that

$$\hat{C}_G = \hat{C}_{\text{trad}}(\hat{y}) + \frac{M-N}{N} \left(\log \left(\frac{M\hat{y}}{M-N} \right) + 1 \right) - \frac{M}{N}\hat{y} \quad (2)$$

Estimates for \hat{y} . The following estimates hold true:

$$\text{var } \hat{y} = \mathcal{O} \left(\frac{1}{N^2} \right) \quad \text{and} \quad \mathbb{E} \hat{y} = y_{\kappa} + \mathcal{O} \left(\frac{1}{N^2} \right)$$

and enable us to **replace** \hat{y} by y_{κ} in (2) and

$$\hat{C}_G \approx \hat{C}_{\text{trad}}(y_{\kappa}) + \frac{M-N}{N} \left(\log \left(\frac{My_{\kappa}}{M-N} \right) + 1 \right) - \frac{M}{N}y_{\kappa}$$

fluctuation-wise.

Elements of proof II

It is therefore sufficient to study the fluctuations of

$$\hat{C}_{\text{trad}}(y_{\kappa}) = \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + y_{\kappa} \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right)$$

Elements of proof II

It is therefore sufficient to study the fluctuations of

$$\hat{C}_{\text{trad}}(y_{\kappa}) = \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* + y_{\kappa} \mathbf{H} \mathbf{H}^* \right) - \frac{1}{N} \log \det \left(\frac{1}{M} \mathbf{Y} \mathbf{Y}^* \right)$$

This can be performed by following step by step

- ▶ W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim and L. Pastur. *A new approach for capacity analysis of large dimensional multi-antenna channels*. IEEE Inf. Theory, Vol. 54 (9), sept. 2008

where a CLT for

$$\mathcal{I} = \frac{1}{N} \log \det \left(\mathbf{I} + \frac{\mathbf{Z} \mathbf{Z}^*}{\rho} \right) , \quad \mathbf{Z} = \frac{1}{N} \mathbf{D}^{1/2} \mathbf{X} \tilde{\mathbf{D}}^{1/2}$$

is established.

Model and objective

Estimation of the ergodic capacity

Fluctuations of the estimator

Conclusion

Conclusion

- ▶ By relying on Large Random Matrix theory, in particular on deterministic equivalents associated to particular models, it is possible to build consistent estimates in a case where the number of observations is of the same order as the dimension of each observation.

Conclusion

- ▶ By relying on Large Random Matrix theory, in particular on deterministic equivalents associated to particular models, it is possible to build consistent estimates in a case where the number of observations is of the same order as the dimension of each observation.
- ▶ The technique presented here can be extended to several other models, **although have to be developed on a case-by-case basis**

A short bibliography on G-estimation/Eigen-inference

- ▶ X. Mestre. *Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates*. IEEE Trans. Inf. Th.; vol 54(11); 2008.
- ▶ R. Couillet, M. Debbah, J.W. Silverstein, Z. Bai. *Eigen-inference for energy estimation of multiple sources*. IEEE Trans. Inf. Th.; vol. 57(4); 2011.
- ▶ P. Vallet and P. Loubaton. *A G-Estimator for the MIMO channel ergodic capacity*. IEEE International Symposium on Information Theory, 2009.
- ▶ A. Kammoun, R. Couillet, J. Najim and M. Debbah. *Performance of capacity inference methods under colored interference*. 2011, submitted - [arXiv:1105.5305](https://arxiv.org/abs/1105.5305).