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(VILRIEGE RISVl Scenario in Wireless communication

Point-to-point wireless communication and MIMO channel
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Figure: MIMO channel with K antennas at the transmitter and N antennas at
the receiver

The received signal is given by y = Hx 4+ ow where

> Hj is the gain between receiving antenna / and emitting antenna j.
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Interference from multiple sources

nterfering user
Interferingiser

| i

Receiver "
Transmitter

Figure: Users with channels G; and G; interfere with the communication
between the receiver and transmitter

Scenario. In a point-to-point wireless communication, the receiver
undergoes coloured interference from multiple sources, whereas the
channel with the transmitter is perfectly known.
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Communication model and ergodic capacity

Communication equation.

K
Y =HXo+ ) GiX +oW
k=1
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Communication model and ergodic capacity

Communication equation.

K
Y =HXo+ ) GiX +oW
k=1

Observations. During a learning sequence, Xg is known and H is
estimated, hence the following observations are available:

Y = Y- HX

GXk+oW 2 GX+oW, G=[Gy, - ,Gkl.
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Associated ergodic capacity.

Corg = % log det (0?1 + GG* + HH*) — %Iogdet (0’1 + GG*)



Objective
Objective
Estimation of the ergodic capacity
1 2 * * 1 2 *
Corg = N log det (0”1 + GG* + HH*) — Nlogdet (o®1+ GG¥)

based on the N x M observations

Y = GX+oW.



Objective
Objective

Estimation of the ergodic capacity
1 1
Corg = 7; log det (6’1 + GG* + HH*) — 7 log det (014+ GG*)

based on the N x M observations

Y = GX+oW.

Regime of interest: M larger but of the same order as :
MxpN, p>1

Formally:

]_ I | | u [0 ON
N N
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The traditionnal estimator

Regime where M >> N. If M — oo, N fixed:

1 1
—EYY* = ¢’l + GG* and —YY* ’l + GG*
M M M—oo,N fixed



The traditionnal estimator
Regime where M >> N. If M — oo, N fixed:
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The traditionnal estimator
Regime where M >> N. If M — oo, N fixed:

a.s.

1 1
—EYY* = ¢?l + GG* and MYY* ’l + GG*

M M—00,N fixed
Hence one expects that:
L log det (ivv* + HH*) L logdet (6?1 + GG* + HH*) — 0
N M N ’
L ogdet ( vy L, det (6’1 +GG*) — 0
— 10 € — — — 10 et|\o .
N 8 v N ¢
Definition of (A:tmd.

o 1 1 1
Ciraa(y) = % log det (MYY* +yHH*) N log det (MYY*)

Lemma. If N is fixed and M — oo, then:

6.tlracl(l) - Cerg — 0.
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Deterministic equivalents |

Mar&enko-Pastur model. If X in a N x M matrix with i.i.d. entries
EXj =0, varXj = 62
We are interested in the limiting behaviour of the spectral measure of
XX
1 . 1o
Ly = N ;(5)\” , (An) eigenvalues of MXX
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Deterministic equivalents |

Mar&enko-Pastur model. If X in a N x M matrix with i.i.d. entries
EXj =0, varXj = 62

We are interested in the limiting behaviour of the spectral measure of
1 *,
XX
1 1
Ly = N ;(5)\" , (An) eigenvalues of ﬁXX*

Stieltjes transform. It is a convenient transform of the spectral measure
Ly and is defined as:

ST(Lw)

NZ)\,,—Z

n=

1 1
1

1 1 -t
= —trace [ —zl + —XX*
N M
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Deterministic equivalents |l

Deterministic equivalent for the Stieltjes transform. The Stieltjes
transform of the spectral measure satisfies:

N

1 1
— P B — —fN z) ———0
N;An(%xx*)—z (=) N,M—0

where fy satisfies the equation:

N
zc — NO*f3 + (z+ (ey — 1) 0%) fy +1 =0, N =
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Deterministic equivalents |l

Deterministic equivalent for the Stieltjes transform. The Stieltjes
transform of the spectral measure satisfies:

N

1 1
— P B — —fN z) ———0
N;An(%xx*)—z (=) N,M—0

where fy satisfies the equation:

N
zc — NO*f3 + (z+ (ey — 1) 0%) fy +1 =0, N =

Maréenko Pastur distribution.

fN = ST(’iTN)
with
1\ VR =00 =ag) Y
ﬂN(d)\) = (1 — a) 2CN92)\ (AE'AE)dA s cN = N .

where AF = 62(1 + ¢,)2.
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Deterministic equivalents |l

Non-centered model. If Y = =X 4+ A. Consider the equation:

VN
1 * 1—1
6= Mtraee {—z(l +en)d+(1—cn)+ 13
Then
LY s ) s 0
N = An(YYT) =z N,M—0

The quantity ¢ is a deterministic equivalent of the spectral measure

1M
Ly = m ;5>\"(YY*) .
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Model and quantity of interest.
1 -1
Y=GX+ocW and Q(y)= <y HH" + MYY*)

Fundamental equation. Let y > 0. The following equation in k = x(y)
admits a unique positive solution:

1 2 .\ (014 GG* A7
Hfﬁtrace <<JI+GG)(1+H+yHH> >
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Deterministic equivalents |ll

Model and quantity of interest.
1 -1
Y=GX+ocW and Q(y)= <y HH" + MYY*)

Fundamental equation. Let y > 0. The following equation in k = x(y)
admits a unique positive solution:

1 2 .\ (0214 GG* A7
Hfﬁtrace <<JI+GG)(1+H+yHH> >

Auxiliary quantity.

o2l + GG*\ "
1+~ ’

T(y) = (y HH" +

T is a deterministic equivalent of Q as we shall see:



Estimation of the ergodic capacity Deterministic equivalents - General results

Asymptotic results

Lemma 1. The following convergences hold true:
1. For y > 0 and (U) N x N matrices with uniformly bounded norm:

1 1
Mtrace uQ(y) — Mtrace UT(y) —=—=—0

N,n—o0



Estimation of the ergodic capacity Deterministic equivalents - General results

Asymptotic results

Lemma 1. The following convergences hold true:
1. For y > 0 and (U) N x N matrices with uniformly bounded norm:

1 1
Mtrace uQ(y) — Mtrace UT(y) —=—=—0

N,n—o0

2. For y > 0 and also for y = 0:

1 1
N log det (y HH* + MYY*)

%l + GG*

1
— ~ logdet ( y HH*
N°ge<y T

Mg rmy+ X " g
_Mo M_ &
NE T TN T R



Estimation of the ergodic capacity Failure of the traditional estimator

Corollary: Ci;aq is not consistent

Lemma 2. Under the regime of interest

R 1 2l + GG* 1
Ctrad(y) - <N |0gdet (yHH* + %) - N Iogdet (0’2| + GG*)>

Mg 4 my+ X MMy (M2 1
N BT T N T . N B\Twm




Estimation of the ergodic capacity Failure of the traditional estimator

Corollary: Ci;aq is not consistent

Lemma 2. Under the regime of interest

R 1 2l + GG* 1
Ctrad(y) - <N lOgdet (yHH* + %) - N Iogdet (0’2| + GG*)>

Mg 4 my+ X MMy (M2 1
N BT T N T . N B\Twm

Remark:This substantially differs from what is expected:

~ 1 1 . « 1 1 *
Cirad(1) — Cerg = N log det MYY +HH* ) — i log det MYY

1 1 .
_ (N log det (02| +GG* + HH*) — - log det (02I +GG*)> Not g



The ergodic capacity

Recall the definition

Corg = %Iogdet(a2l+GG*+HH*) - %Iogdet(a2l+GG*)

Splitting the ergodic capacity. Write Cog = CL, — C2,, where

erg erg

ct, = %Iogdet (U2I+GG*+HH*)
Cy = %bgdet(&wcc*)

We shall separately estimate the 2 quantities, beginning with C?

erg"



=541 BTN Lol [T LTl A consistent estimator for the ergodic capacity

Estimation of C3,

Applying Lemma 1-2) for y = 0:

1 1
— log det HH" + —YY~
N og de (y + ] )

1 . o’l+GG* M M &
—Nlogdet yHH® + —

— — 1 < — —
1+r N og(t )+ g o

yields © = 7% and

Ly dt(2|+GG*) L ogdet (Lyyr) + NoM g (M=N 1250
— 10, € — — 10 € —_— Of — .
RGN N & M e\Twm

hence the desired result.
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Estimation of CJ,

Recall the definition of Cl.:

1
(o 7 log det (6?1 + GG* + HHY)

erg —
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Estimation of CJ,

Recall the definition of Cl.:
1 1 2 * *
Corg = i log det (o°1 + GG* + HH)

> A priori, Celrg does not only depend on the eigenvalues of GG™, in

contrast with CZ,.

» Hence, it will be difficult to get an estimator simply based on the

eigenvalues of the observations %YY*



=541 BTN Lol [T LTl A consistent estimator for the ergodic capacity

Outline of the proof
Available result

1 1
— log det HH" + —YY~
N og de (y + ] )

1
— — ¢ logdet | y HH"
3 {lsce (vhn s

%l + GG*

1+~

>+M|og(1+/ﬂ7)—M

K

1+ k



A consistent estimator for the ergodic capacity
Outline of the proof

Available result
L ogdet (yHA® + 2 vy®
L o de L
N B\ M

L [ g det (ynme + Z1ESST) Ly At+r)—mM—V, 4o
—_ — (o] € —_— O K) —
TR R 1tr & 1+n

1. Link between C(}rg and the observations if y,, = liﬁz

1 1. ) M—N M
Cly— (N log det (MYY + y..HH ) + = log(y,) + N(lfy,{)) =0 (1)
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Outline of the proof

Available result

1 1
— log det HH" + —YY™
N og de (y + ] )

1 N o2l + GG* K
- N logdet [ yHH® + ——— | + Mlog(1 + k) — M — 0

1+~ 1+ k

1

1. Link between C(}rg and the observations if y,, = -

1 1. ) M—N M
Cly— (N log det (MYY + y..HH ) + = log(y,) + N(lfym)) =0 (1)

2. Approximation § (which depends on the observations!) of y,; (which
depends on the unknown G!)

3. Substitution of y,, by ¥ in (1).
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Details on |

Approximation of y,,. Recall that

1 2l + GG* -t
K= Mtrace ((02| + GG*) (% +yHH*> )

Lemma Define y by
+

1 -1
g=1- trace HH* (}”/HH* + MYY*)

SN

N
M
then y —y, — 0
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Details on y Il

Elements of proof. It is easy to prove that y = ﬁ(y) admits a unique
solution y,. and that

N 1 * 2 * %\ —1
Ve = I—M—&-Mtrace HH (a I+ GG* + HH )
N oy . (021 +GG* A
= 1- i + Mtrace HH (T + y-HH )
= 1- ﬂ + &trace HH*T(y.)
M M
~ 1-— ﬂ + &trace HH*Q(y+)
M M

Hence y satisfying
N ¥
y=1-——+ = HH*Q(Y
v v + Mtrace Q)

is a good candidate to approximate y,.
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Consistent estimator for Ceo

Gathering the 2 estimators for C1 and C2.,, we obtain:

erg erg’
Cerg—ac—>0
where
” 1 1 1 1
C = —logdet | —YY* 4+ yHH* ) — — logdet [ —YY*
¢ = gytoeder (YY" IHH") - Liogder (L vv*)
L MoN My N L) M,
o M
N E\M_n nNY
In particular,

A M—-N My M
= GCirad(¥ | 1) ——y
wrad(§) + — (og(M_N>+ ) s
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Fluctuations of the estimator

A central limit theorem for 6@

Theorem. Let
Oy = 2log(Myx)
~log {(M —N) (M — trace (l + HH* (GG* + a2|)‘1>_2>}

Then

e% (€6 — Cors) 2 N(0.2).



Fluctuations of the estimator

Elements of proof |

Recall that

. R M—N My M
Ce = Ciraa(y | 1) ——y 2
6 = Curaa(§) + m (og(M N)+ ) Y4 (2)



Fluctuations of the estimator

Elements of proof |

Recall that

. . M— N My M
Ce = Ciraa(y | 1) —-—y 2
6 = CGraad(9) + — (og(M_N)+ ) Y4 (2

Estimates for y. The following estimates hold true:

1 1
Varf/:O(m) and E)“/:yﬁ—i-(?(m)



Fluctuations of the estimator

Elements of proof |

Recall that

. . M— N My M
Ce = Ciraa(y | 1) —-—y 2
6 = CGraad(9) + — (og(M_N)+ ) Y4 (2

Estimates for y. The following estimates hold true:
- 1 N 1
var § = O N and Ey=y.+0O el

and enable us to replace y by y, in (2) and

C C M—N My M
Ce = Ciraalyx) + (Iog ( 4 ) + 1) - v

N M- N N

fluctuation-wise.
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Elements of proof Il

It is therefore sufficient to study the fluctuations of

A~ 1 1 1 1
Ciraa(ys) = N log det (MYY* +yHHH*) ) log det (MYY*)



Fluctuations of the estimator

Elements of proof Il

It is therefore sufficient to study the fluctuations of

A~ 1 1 1 1
Ciraa(ys) = N log det (MYY* +yHHH*> ) log det (MYY*)

This can be performed by following step by step

» W, Hachem, O. Khorunzhiy, P. Loubaton, J. Najim and L. Pastur. A new approach for
capacity analysis of large dimensional multi-antenna channels. |EEE Inf. Theory, Vol. 54
(9), sept. 2008

where a CLT for

*

zz ) 7 - Lpiexple
p /)’ N

1
Z = —logdet (|
Noge(Jr

is established.
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Conclusion

» By relying on Large Random Matrix theory, in particular on
deterministic equivalents associated to particular models, it is
possible to build consistent estimates in a case where the number of
observations is of the same order as the dimension of each

observation.



Conclusion

Conclusion

» By relying on Large Random Matrix theory, in particular on
deterministic equivalents associated to particular models, it is
possible to build consistent estimates in a case where the number of
observations is of the same order as the dimension of each
observation.

» The technique presented here can be extended to several other
models, although have to be developed on a case-by-case basis



Conclusion

A short bibliography on G-estimation/Eigen-inference

» X. Mestre. Improved Estimation of Eigenvalues and Eigenvectors of Covariance
Matrices Using Their Sample Estimates. |EEE Trans. Inf. Th.; vol 54(11); 2008.

» R. Couillet, M. Debbah, J.W. Silverstein, Z. Bai. Eigen-inference for enery
estimation of multiple sources. |EEE Trans. Inf. Th.; vol. 57(4); 2011.

»> P. Vallet and P. Loubaton. A G-Estimator for the MIMO channel ergodic
capacity. |EEE International Symposium on Information Theory, 2009.

» A. Kammoun, R. Couillet, J. Najim and M. Debbah. Performance of capacity
inference methods under colored interference. 2011, submitted -
arXiv:1105.5305.
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